

3rd INTERNATIONAL CONGRESS ON ENGINEERING AND LIFE SCIENCE SEPTEMBER 2023 TRABZON-TURKIYE

ORAL PRESENTATION

https://doi.org/10.61326/icelis.2023.16

Biochar/Slag Composite: A Novel Adsorbent for CO₂ Capture

İlayda Çalış, Gülcihan Güzel Kaya[™] Konya Technical University, Chemical Engineering, Konya/TÜRKİYE

[™]Correspondence: ggkaya@ktun.edu.tr

Abstract: Carbon dioxide (CO_2) is one of the main greenhouse gases which contribute to global warming. CO_2 concentration is increasing around the world day by day. It is estimated that CO₂ concentration will be approximately 570 ppm in 2100. Many carbon capture and storage techniques have been developed to reduce CO₂ emission. Adsorption with using low-cost solid adsorbents is a promising CO_2 capture technique. In this study, low-cost biochar/slag composites were evaluated as a CO_2 adsorbent. Firstly, neat slag was modified with different concentrations of HCl solution (0.25, 0.50, 1.00, 3.00 and 5.00 M). Maximum surface area and pore volume were achieved through the 1.00 M HCl modification. So, biochar/slag composites were prepared using 1 M HCl modified slag and various amount of biochar (1, 3 and 5 wt%). Structural and morphological properties of the biochar/slag composites were investigated by Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) analyses, respectively. To examine surface charge of the biochar/slag composites, point of zero charge (pHpzc) measurements were conducted. CO_2 adsorption studies were carried out with volumetric sorption analyzer at ambient conditions. The biochar/slag composite including 3 wt% biochar showed maximum CO₂ adsorption capacity. With the addition of 3 wt% biochar, CO₂ adsorption capacity of the 1 M HCl modified slag increased from 0.10 mmol g⁻¹ to 0.18 mmol g⁻¹. The possible CO₂ adsorption mechanisms of the biochar/slag composites are thought to be electrostatic attractions and hydrogen bonds as well as pore filling. The results revealed that the biochar/slag composites can be used as novel and low-cost CO₂ adsorbents.

Keywords: Biochar, Slag, Composite, CO₂ adsorption.