

3rd INTERNATIONAL CONGRESS ON ENGINEERING AND LIFE SCIENCE

CELIS 20-22 SEPTEMBER 2023 TRADZON-TURKIN

ORAL PRESENTATION

https://doi.org/10.61326/icelis.2023.41

Soil CO₂ Effluxes in Post-fire and Undisturbed *Pinus nigra* Forests: A Soil Moisture Manipulation Study

Renato S. Pacaldo^{1,2™}, Miraç Aydın¹, Randell Keith Amarille^{1,2}

¹Kastamonu University, Faculty of Forestry, Kastamonu/TÜRKİYE ²Mindanao State University-Main Campus, College of Forestry and Environmental Studies, Department of Forestry, Marawi City, Lanao del Sur/PHILIPPINES **□Correspondence:** renato.pacaldo@msumain.edu.ph

Abstract: Climate change impacts are driving hydrological extremes and frequent occurrences of forest fires. Whether these impacts result in dramatic changes in the soil CO₂ efflux (F_{CO2}) remains poorly understood. This study seeks to understand the changes in the soil F_{CO2} in recently burned forest (post-fire) and an undisturbed black pine (*Pinus nigra*, Arnold) forest in Türkiye. A field experiment in a three-way factorial randomized complete block design experiment was established with four replications and three factors; shaded (west) and exposed (east), types of forest fires (surface, crown, and control) and soil moisture regimes (dry, wet, and control). A dynamic survey chamber soil respiration machinery (LI-8100A) was employed to measure simultaneously the soil Fco₂, the soil temperature, and the soil moisture for a total duration of one-year. The soil F_{CO2} showed significant differences among treatments (p < 0.0001), time (p < 0.0001), but not with the interaction effects between treatment and time (p = 0.0058), aspects (p = 0.95410), and types of forest fires (p = 0.0059). A dry soil in the crown fire site situated in the exposed aspect exhibited a significantly different and lowest soil F_{CO2} compared to other treatments. No statistically significant differences in the F_{CO2} in the wet soil were detected among treatments. The soil and air temperatures showed a strongly positive correlation (r = 0.78), suggesting that a near-surface air temperature provides a good approximation of the soil temperature. This piece of information is a vital input for the projection of future trajectory of soil CO₂ emissions and conservation of C stocks in the forest fire and undisturbed forests.

Keywords: Forest fire, Climate change, Soil temperature, Air temperature, Dry soil, Wet soil.