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Abstract: Most terrestrial carbon (C) is stored in forests, an important source of fiber and fuel for humans. Therefore, 

forests play an essential role in mitigating the effects of climate change by reducing the carbon level in the atmosphere. 

Field measurements and remote sensing techniques determine the stored above-ground carbon (AGC). This study used 

Sentinel-2 satellite image to estimate the amount of AGC in pure Taurus cedar (Cedrus libani A. Rich.) stands in Elmalı 

Forest Enterprise. Regression models were developed for AGC estimation with the reflectance and vegetation indices 

obtained from the Sentinel-2 satellite image. Within the scope of the study, the field measurement data obtained from 120 

sample plots were used and AGCs of their corresponding stands were estimated with an allometric equation. The sample 

plots data was randomly divided into modeling (70%, 84 sample plots) and control data (30%, 36 sample plots) to fit the 

regression models and to test the accuracy of the models, respectively. Multiple linear regression analysis were conducted 

to develop the models, and three goodness-of-fit statistics (R2, RMSE and MAE) were used to compare the success of 

these models. When the achievements of the models were evaluated, it was revealed that the model containing the MSR 

vegetation indice gave more successful results (R2=0.488). Consequently, it was determined that the developed models 

were moderately successful in estimating AGC. 
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1. INTRODUCTION 

The Paris Climate Agreement stipulates the reduction of fossil fuel emissions and net neutral carbon emissions by 

balancing source and sink areas by 2100 (Walsh et al., 2017). At the same time, one of today's most significant issues is 

reducing greenhouse gas (GHG) emissions by phasing out the infrastructures and technologies that produce fossil carbon 

emissions (Berndes et al., 2016). Determining the potential of carbon sinks and reducing emissions is crucial (Vashum & 

Jayakumar, 2012). Oceans, wetlands, rocks and forests are the leading carbon sinks. At the same time, these areas are 

critical in emission reductions (Dixon et al., 1994; Moomaw et al., 2018). Terrestrial ecosystems are currently a significant 

net sink for atmospheric CO2 on a global scale (approximately 1 gigaton C annually) [Canadell & Raupach, 2008]. 

Forestry is more responsible for a fifth of the world's carbon emissions than the global transport industry. According to 

Climate Change: Global Forest Financing, a total of $3.7 trillion in long-term savings could be achieved by halving 

deforestation. However, if nothing is done about deforestation on a global scale, the worldwide economic cost of climate 

change will be predicted to reach 12 trillion USD (Eliasch, 2008). To monitor and examine climate change, which is 

directly related to carbon emissions, in temporal and spatial terms, the amounts of carbon released and stored must be 

determined (Vashum & Jayakumar, 2012). 

Traditionally, a forest’s above-ground carbon (AGC) stock is obtained through field measurement. This method is 

expensive, often labor-intensive, time-consuming, and limited area. Instead of traditional methods, remote sensing offers 

a faster, repeatable, objective and effective way (Myeong et al., 2006). In addition, it allows working in larger areas with 

less cost and labor. Band reflectance, vegetation indices and various remote sensing data are commonly used to estimate 

carbon stock with remote sensing (Aricak et al., 2015; Günlü & Ercanlı, 2020; Günlü et al., 2021; Keleş et al., 2021; 

Turgut & Günlü, 2022; Bulut et al., 2022; Oktian et al., 2022; Sivrikaya & Demirel, 2022).  
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This study aimed to investigate the possibilities of using Sentinel-2 satellite images in estimating the AGC stock for pure 

Taurus cedar stands spread in Elmalı Forest Enterprise, Antalya/Türkiye. 

2. MATERIALS AND METHODS 

2.1. Study Area 

The study area includes pure Taurus cedar stands of Elmalı Forest Enterprise, located in the Mediterranean region of 

Türkiye. This enterprise consists of Çığlıkara, Elmalı and Tekke Planning Units (PU). It is situated between 29°39′00″ 

and 30°18′00″ Eastern latitudes and 36°27′00″ and 37°00′00″ Northern longitudes (Figure 1). The elevation of the study 

area varies from 1015 to 3054 m. The study area is 180884.4 ha; approximately 36% (64623.7 ha) of this area consists of 

forests and 64% (116260.7 ha) of open areas. 42% (26723.8 ha) of the forest area consists of high forests and 58% 

(37899.9 ha) of degraded forests. The study area has Mediterranean climate. In addition, Brutian pine, Taurus cedar, black 

pine, Taurus fir, juniper and oak species are common. According to the Köppen climate system, the study area is in the 

C (temperate) climate group, Csa class, representing the hot summer Mediterranean climate. The C indicates cold, dry 

and hot summer in the Csa climate type. The coldest month is above 0 °C, the hottest month is above 22 °C, and the 

average temperature for at least four months is over 10 °C, according to monthly averages. The wettest month of the year 

experiences at least three times as much rain as the driest month of the year. The driest month of summer sees less than 

30 mm of precipitation (Beck et al., 2020). 

 

Figure 1. Study area and sample plots. 

2.2. Field Measurement 

In the study, the data obtained from 120 sample plots of pure Taurus cedar stands, taken in 2016 to make the Forest 

Management Plans of the Planning Units of the Elmalı Forest Enterprise, were used as field measurement data 

(Anonymous, 2016). Sample plots were taken as circular sample plots of 800 m2 in stands with 11-40%, 600 m2 in stands 

with 41-70%, and 400 m2 in stands with more than 71% crown closure. The diameter at breast height (dbh, cm) of all 

trees 8 cm and above in each sample plot was measured. The volumes and above-ground carbon amounts of all trees 

measured in the sample plots were calculated using allometric equations (Equation 1 and 2) developed by Durkaya et al. 

(2013) for pure Taurus cedar stands in Elmalı region. Then, above-ground carbon stocks of all trees in each sample plot 

were summed, and stand-level above-ground carbon stocks (t ha-1) were calculated. 

𝑉 = 0.0676 + (−0.0134 ∗ 𝑑𝑏ℎ) + (0.001 ∗ 𝑑𝑏ℎ2)   (1) 
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𝐴𝐺𝐶 = 1.518083 + (343.1626 ∗ 𝑉)   (2) 

Where; dbh, diameter at breast height (m); V, stem volume (m3); AGC, above-ground carbon stock (kg). 

To create data sets for model development and validation, 120 sample plots were randomly divided into two groups: the 

modeling data (70%, 84 sample plots) and the validation data (30%, 36 sample plots). Table 1 provides summary statistics 

of field measurement data. 

Table 1. Descriptive statistics of sample plots. 

Statistics Stand volume (m3 ha-1) AGC (t ha-1) 

Modeling data (84 sample plots)  

Minimum 18.020 6.639 

Maximum 439.560 151.410 

Mean 189.991 66.024 

Standard deviation 99.850 33.385 

Validation data (36 sample plots)  

Minimum 10.393 3.997 

Maximum 413.680 142.756 

Mean 191.404 66.551 

Standard deviation 109.026 37.740 

2.3. Remote Sensing Data and Processing 

The Sentinel-2 satellite image used in this study was downloaded free of charge from https://dataspace.copernicus.eu.  

Sentinel-2, starting from 2015, has extended to visible four spectral bands (Bands 2, 3, 4, and 8) at 10 m, near-infrared 

six bands (5, 6, 7, 8a, 11, and 12) at 20 m and shortwave infrared three bands (1, 9 and 10) at 60 m spatial resolution. 

Since the field measurements given the data used in the study were obtained in 2016, the Sentinel-2 satellite image dated 

24.07.2016 was used to collect remote sensing data. The strip width of this image is 290 km and the temporal resolution 

is 10 days. Sentinel-2 satellite image was obtained in Level-1 C format, which includes atmospheric, radiometric, and 

geometric corrections. 

The remote sensing data used in this study were reflectance values and vegetation indices. The reflectance was calculated 

at each sample plot for ten bands (2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12) of the Sentinel-2 satellite image. In order to obtain 

reflectance values, the satellite image was calibrated using QGIS 3.8.1. To calculate the reflectance values of the sample 

plots, a "buffer zone" was created according to the sample plot sizes (11.28, 13.82, and 15.96 m radius) using ArcGIS 

10.8.1. Reflectance values were obtained by averaging the pixel values within the sample plot boundaries with the "zonal 

statistics tabulated" command for each band. 32 different vegetation indices obtained from the literature were calculated. 

The reflectance values of the Sentinel-2 satellite image were used to calculate these indices (Table 2). 

Table 2. Calculated vegetation indices. 

Vegetation Indice Reference 

BNDVI (Blue-normalized difference vegetation indice) Yang et al. (2007) 

Clgreen (Chlorophyll content) Gitelson et al. (2003) 

Clrededge (Chlorophyll indice rededge) Gitelson et al. (2003) 

CTVI (Corrected transformed vegetation indice) Perry Jr and Lautenschlager (1984) 

CVI (Chlorophyll vegetation indice) Vincini et al. (2007) 

DVI (Differenced vegetation indice) Richardson and Wiegand (1977) 

EVI (Enhanced vegetation indice) Huete et al. (2002) 

EVI2 (Enhanced vegetation indice 2) Miura et al. (2008) 

  

https://dataspace.copernicus.eu/
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Table 2. (continued) 

Vegetation Indice Reference 

EVI2.2 (Enhanced vegetation indice 2.2) Jiang et al. (2008) 

GARI (Green atmospherically resistant vegetation indice) Gitelson et al. (1996) 

GBNDVI (Green-Blue normalized difference vegetation indice) Wang et al. (2010) 

GEMI (Global environment monitoring indice) Pinty and Verstraete (1992) 

GNDVI (Green normalized difference vegetation indice) Gitelson et al. (1996) 

GLI (Green leaf indice) Gobron et al. (2000) 

GOSAVI (Green optimized soil-adjusted vegetation indice) Rondeaux at al. (1996) 

GRNDVI (Green-Red normalized difference vegetation indice) Gitelson and Merzlyak (1996) 

GSAVI (Green soil adjusted vegetation indice) Sripada (2005) 

GVMI (Global vegetation moisture indice) Ceccato at al. (2002) 

LCI (Leaf chlorophyll indice) Thenkabail at al. (1999) 

MNDVI (Modified normalized difference vegetation indice) Jurgens (1997) 

MSR (Modified simple ratio) Chen (1996) 

NBR (Normalized difference NIR/SWIR normalized burn ratio) Key and Benson (2005) 

NDVI (Normalized difference vegetation indice) Rouse et al. (1974) 

NDWI (Normalized difference water indice) McFeeters (1996) 

NLI (Nonlinear vegetation indice) Goel and Qin (1994) 

PNDVI (Pan normalized difference vegetation indice) Wang et al. (2007) 

PVR (Photosynthetic vigor ratio) Metternicht (2003) 

SAVI (Soil adjusted vegetation indice) Huete (1988) 

SARVI (Soil and atmospherically resistant vegetation indice) Kaufman and Tanre (1992) 

TCARI (Transformed chlorophyll absorption ratio) Daughtry et al. (2000) 

WDVI (Weighted difference indice) Clevers (1989) 

WDRVI (Wide dynamic range vegetation indice) Gitelson (2004) 

As a result, 42 remote sensing data were produced for each sample plot, including 10 reflectance values and 32 vegetation 

indices using Sentinel-2 satellite image. 

2.4. Modeling and Model Validation 

Multiple linear regression (MLR) was used to fit the relationships between above-ground carbon (AGC) and remote 

sensing data (reflectance values and vegetation indices obtained from the Sentinel-2). The stepwise variable selection 

method was used to generate MLR models for the least squares method. Thus, the success of reflectance and vegetation 

indice values in AGC prediction was tried to be revealed. 

The goodness-of-fit measures used to assess the MLR models included coefficient of determination (R2), root mean square 

error (RMSE), and mean absolute error (MAE).  

𝑅2 = 1 −
∑(𝑦𝑖−�̂�𝑖)2 

∑(𝑦𝑖−�̅�)2     (3) 

𝑅𝑀𝑆𝐸 = √
∑(𝑦𝑖−�̂�𝑖)2

𝑛−1
    (4) 

𝑀𝐴𝐸 =
∑|𝑦𝑖−�̂�𝑖|

𝑛
    (5) 

These equations use the variables 𝑦𝑖  and �̂�𝑖 to represent observed and expected AGC, respectively.  
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The suitability of the models developed to estimate AGC was tested with an independent validation data group. For this 

purpose, a comparison was made with the Paired Samples t-Test using the data obtained from field measurements from 

the sample plots allocated for validation data and the prediction data calculated for the relevant sample plots with the help 

of the models developed. 

3. RESULTS AND DISCUSSION 

The correlation analysis resulted that the DVI, GOSAVI, and GSAVI indices didn’t show significant correlation with 

AGC (p>0.05). During the modeling phase, the other reflectance values and vegetation indices were considered as 

independent variables (Table 3). 

Table 3. Correlations between AGC and Sentinl-2 data. 

Variable r Variable r Variable r 

SB4 -0.668** WDRVI 0.669** NDWI 0.565** 

SB11 -0.634** GEMI 0.667** Clrededge 0.477** 

SB2 -0.633** GRNDVI 0.663** NLI 0.471** 

SB12 -0.631** ChlGreen -0.649** SARVI -0.452** 

SB3 -0.598** GNDVI 0.649** SAVI 0.427** 

SB5 -0.581** PVR 0.647** CVI 0.422** 

SB8a -0.461** GBNDVI 0.639** EVI 0.378** 

SB8 -0.453** GLI 0.639** EVI2.2 0.367** 

SB6 -0.449** PNDVI 0.624** TCARI 0.327** 

SB7 -0.434** BNDVI 0.618** EVI2 0.294** 

GARI 0.672** LCI 0.604** WDVI -0.292** 

CTVI 0.669** GVMI 0.602** DVI 0.082 

MSR 0.669** MNDVI 0.569** GOSAVI -0.069 

NDVI 0.669** NBR 0.569** GSAVI -0.076 
**Correlation is significant at the 0.01 level. *Correlation is significant at the 0.05 level. 

Firstly, the MLR models for AGC were fitted separately for reflectance values and vegetation indices. In the models 

developed with reflectance values, the coefficient of determination of the model with Band 4 was 0.423, while the model 

success was 0.456 with the inclusion of Band 6 in the model. The other reflectance values did not make significant 

contributions. In the models fitted using vegetation indices, the most successful model contained only the MSR indice 

(R2=0.488). Then, all remote sensing data (reflectance values and vegetation indices) were tried to fit, but the MSR indice 

was also an alone independent variable within the final model. As a result, among the developed models, the model with 

the MSR indice has the highest R2 and the lowest RMSE and MAE values (Table 4). 

Table 4. Multiple linear regression results for AGC. 

Independent variable groups Independent variables (xi) Coefficients (bi) R2 SEE RMSE MAE 

Reflectance 

Constant 117.107 
0.423 25.657 26.673 22.313 

B4 -904.712 

Constant 73.507 

0.456 25.080 25.797 21.511 B4 -1299.940 

B6 440.594 

Vegetation Indice 
Constant -17.802 

0.488 24.173 24.027 19.926 
MSR 71.593 

Reflectance-Vegetation Indice 
Constant -17.802 

0.488 24.173 24.027 19.926 
MSR 71.593 
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Paired t-test results showed no statistical difference (p>0.05) between the estimated values of AGC and those obtained 

by field measurements (Table 5). The developed models are suitable for pure Taurus cedar stands from which the data 

obtained to develop these models. 

Table 5. t-test results for models developed for AGC predicted. 

Model Variables Mean Standard Deviation Standard Error of Estimation t p-value 

1 B4 70.629 34.318 5.720 -0.712 0.481 

2 B4 and B6 72.341 36.358 6.110 -0.948 0.350 

3 MSR 70.047 38.289 6.381 -0.548 0.587 

According to the residual graphs of the developed models, the estimated AGC values in the model developed with Band 

4 show systematic residuals. Similarly, the systematic residual was also observed in the model graph generated with Band 

4 and 6. The model developed with MSR, however, shows random residual distribution, in contrast to the models with 

reflectance values (Figure 2). 
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Figure 2. Observed vs. predicted graphs and residual distributions of the models developed. 

The best model results for AGC estimations were obtained with independent variable group including the MSR indice 

(R2=0.488). On the other hand, model success increased with the inclusion of Band 6 to the reflectance-based models that 

contained Band 4 (R2=0.456). In the model with all remote sensing data, i.e., reflectance and vegetation indices were 

together, the resulting model had the MSR indice only. There are some studies in the literature use Sentinel 2 images and 
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remote sensing data in modeling the AGC, and this study showed similar results to the literature. Moradi et al. (2022) 

estimated the AGB in the Hyrcanian forests with the Sentinel-2 satellite image using stepwise regression, and Band 6 

gave the most successful model (R2=0.547). In our study, model success increased also with introducing Band 6 into the 

model. Nuthammachot et al. (2022) developed the most successful model (R2=0.820) with NDI45 and Band 6 to estimate 

AGC with Sentinel-2 satellite image. Keleş et al. (2021) estimated the AGC with the reflectance values using Sentinel-2 

satellite image for Hızardere PU in Türkiye. Among the reflectance values, they best predicted AGC with Band 4 

(FI=0.454) as in our study. Pandit et al. (2018), in Nepal Parsa National Park, modeled the AGC with 23 different variables 

(R2=0.810) using the Random Forest method backward technique with the reflectance and vegetation indices obtained 

from the Sentinel-2 satellite image. Askar et al. (2018) successfully modeled AGC with the MSR indice (R2=0.750) using 

linear regression with Sentinel-2 in Indonesia's Jetis and Girisekar forests. Lu et al. (2022) used the MSR indice from the 

Sentinel 2 satellite image (R2=0.580) to estimate the above-ground biomass with regression analysis in the Nan Da Gang 

Wetland Protected Area in China. Vegetation indices derived from various satellite images have also been researched. In 

the Bedul Mangrove Block, Purnamasari et al. (2021) predicted the AGC with DVI acquired from PlanetScope image 

(R2=0.670). Sivrikaya and Demirel (2022) estimated the AGC in Burmahanyayla PU with Landsat-9. They developed a 

model to estimate AGC with NDVI obtained from Landsat-9 (R2=0.623). 

4. CONCLUSION 

According to the results of this study, R2 values of the MLR model generated from Sentinel-2 for AGC were found to be 

0.488. The best regression result for AGC was obtained with the independent variable group including vegetation indices. 

The prediction success of AGC models is partially sufficient. The possible reasons for these deficiencies could be the 

spatial resolution of the satellite image, acquisition time and correction errors, mounting method, topographic and stand 

structure of the study area, etc. In addition, errors that may occur in measurements during forest inventory affect the 

model’s success. Satellite imagery with high spatial resolution and additional modeling techniques such as machine 

learning methods (SVM, ANN, RF, K-ENN, etc.) can be employed to improve the performance of regression models in 

AGC prediction. Sentinel-1 satellite images, which have a higher resolution than Sentinel-2, can be used and received 

without cost if price is a concern. The use of unmanned aerial vehicle images for remote sensing in forestry, which has 

lately gained popularity, requires new and updated research. 
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